
Pull-up Optimization
in the Postgres Planner
Alena Rybakina

PGDU 2025

About Me

Make contribution in PostgreSQL since 2023:
• OR to ANY transformation
• Values to ANY transformation
• Others

Developer in Postgres Professional since
2021

Participate in development of extensions:
• AQO
• Replaning

2

https://github.com/postgres/postgres/commit/d4378c0005e61b1bb78e88097ea6efcdddbe2d6e
https://github.com/postgres/postgres/commit/d48d2e2dc8be50d3ca13305b5699384329b15433
https://github.com/postgrespro/aqo
https://postgrespro.com/docs/enterprise/16/realtime-query-replanning

Outline of the Report

1. Pull-up Optimizations in Postgres

5. Conclusion and Future Development

3

2. Types of Pull-up Optimizations in Postgres

4. Deep Dive: EXISTS Pull-up and Its Core Issue

3. The Transformation Pipeline

Pull-up Optimizations in Postgres

PGDU 2025

What Is Pull-up Optimization

5

Pull-up optimization rewrites the query tree by flattening subqueries into the parent query, so
they are not executed as nested units.
This exposes higher-level planner optimizations such as global join-order search and
construction of Equivalence Classes.

Pull-up Optimizations in Postgres

Jointree

FromExpr JoinExpr

RangeTblRef1 larg

RangeTblRef2 rarg

pull_up_subqueries_recurse() walks the jointree and
decides what to do based on the node type:
● RangeTblRef: inspect the referenced entry:

○ RTE_SUBQUERY
○ simple UNION ALL or VALUES clauses
○ SubLink quals

● FromExpr: recurse into each child
● JoinExpr: recurse into left (larg) and right (rarg)

arguments

Pull-up optimization rewrites the query tree by flattening subqueries into the parent query, so
they are not executed as nested units.
This exposes higher-level planner optimizations such as global join-order search and
construction of Equivalence Classes.

6

Simple VALUES

SELECT v.x + 1 AS y FROM (VALUES (42, 'eu')) AS v(x, r) WHERE v.x = 0;
--
 Values Scan on "*VALUES*" (actual time=0.007..0.007 rows=0.00 loops=1)
 Filter: (column1 > 0)

 Result (actual time=0.004..0.005 rows=0.00 loops=1)
 One-Time Filter: false

7

Simple VALUES

 Result (actual time=0.004..0.005 rows=0.00 loops=1)
 One-Time Filter: false  

SELECT v.x + 1 AS y FROM (VALUES (42, 'eu')) AS v(x, r)
WHERE v.x = 0;

The subquery is transformed
into one-time filter logic —
evaluated once since the
condition is constant.

8

 Result (actual time=0.004..0.005 rows=0.00 loops=1)
 One-Time Filter: false  

SELECT v.x + 1 AS y FROM (VALUES (42, 'eu')) AS v(x, r)
WHERE v.x = 0;

Simple VALUES

The One-Time Filter is formed
from the result of v.x = 0, but
due to x = 42, then we need to
check 42 = 0, so it is false.

9

Types of Pull-up Optimizations in Postgres

PGDU 2025

Main Types of Pull-up optimizations in Postgres

● Simple VALUES - Flattened directly into the upper query as a
RangeTblEntry; a trivial transformation.

● SubLinks - Subqueries embedded inside expressions that can be
pulled up if semantically safe:
○ ANY / ALL Subquery Expressions - Transformed into join forms

when possible to leverage join planning.
○ EXISTS Subquery Expressions - Transformed into semi-joins;

special handling due to correlation semantics.

11

The planner replaces EXISTS with a Semi-Join for efficiency, avoiding per-row subquery execution.
The Semi-Join links the outer table ta with the subquery table tb, transforming the WHERE clause into a join
condition.

EXISTS Subquery Transformation

select id from ta where exists (select aval from tb where tb.id = ta.id)

We return id values from ta only when they match id values from tb.
This can be transformed into a Semi-Join.

A ⋉ B

Initial Plan
(SeqScan with ANY filter)

--
 Seq Scan on ta
 Filter: (ANY

 (id = (hashed SubPlan 2).col1))
 SubPlan 2
 -> Seq Scan on tb

Semi-Join Visualization

12

The planner replaces EXISTS with a Semi-Join for efficiency, avoiding per-row subquery
execution and linking ta with tb, transforming the WHERE clause into a join condition.

select id from ta where exists (select aval from tb where tb.id = ta.id)

 Hash Join
 Hash Cond: (ta.id = tb.id)
 -> Seq Scan on ta
 -> Hash
 -> Seq Scan on tb

Optimized Plan
(Semi-Join represented as Hash Join)

--
 Seq Scan on ta
 Filter: (ANY

 (id = (hashed SubPlan 2).col1))
 SubPlan 2
 -> Seq Scan on tb

Initial Plan
(SeqScan with ANY filter)

EXISTS Subquery Transformation

13

 Hash Join
 Hash Cond:

((ta.val = tb.aval) AND (ta.id = tb.id))
 -> Seq Scan on ta
 -> Hash
 -> Seq Scan on tb

--
 Seq Scan on ta
 Filter: (ANY (val = (SubPlan 1).col1))
 SubPlan 1
 -> Index Scan using tb_pkey on tb
 Index Cond: (id = ta.id)

Initial Plan
(SeqScan with ANY filter)

The planner replaces the IN with an Inner Join for efficiency, avoiding per-row subquery
execution and linking ta with tb, transforming the WHERE and IN clause into a join condition.

ANY / IN Subquery Transformation

select id from ta where ta.val in (select aval from tb where tb.id = ta.id)

Optimized Plan

14

--
 Seq Scan on ta
 Filter: (NOT (ANY

 (id = (hashed SubPlan 2).col1)))
 SubPlan 2
 -> Seq Scan on tb

Initial Plan
(SeqScan with NOT ANY filter)

NOT Exists Subquery Transformation

We return id values from ta only when they DON’T match id values from tb.
This can be transformed into an Anti-Join.

Anti-Join Visualization

select id from ta where NOT exists (select aval from tb where tb.id = ta.id)

15

 Hash Anti Join
 Hash Cond: (ta.id = tb.id)
 -> Seq Scan on ta
 -> Hash
 -> Seq Scan on tb

Optimized Plan
(Anti-Join represented as Hash Anti Join)

--
 Seq Scan on ta
 Filter: (NOT ANY

 (id = (hashed SubPlan 2).col1))
 SubPlan 2
 -> Seq Scan on tb

Initial Plan
(SeqScan with NOT ANY filter)

The planner replaces EXISTS with a Semi-Join for efficiency, avoiding per-row subquery
execution and linking ta with tb, transforming the WHERE clause into a join condition.

NOT Exists Subquery Transformation

select id from ta where NOT exists (select aval from tb where tb.id = ta.id)

16

The Transformation Pipeline

PGDU 2025

How Pull-up Works: Main Planner Pipeline

General pipeline of pull-up transformation:

● Applicable if the subquery is simple — i.e., has no grouping, aggregates, SRFs, DISTINCT,
ORDER BY, or LIMIT/OFFSET clauses.

● Process subqueries:
○ Preprocess relation RTEs.
○ Pull up any SubLinks; their own children are flattened first.

● Adjust varno references and decrement varlevelsup for outer variables inside the
subquery.

18

The planner replaces EXISTS with a Semi-Join for efficiency, avoiding per-row subquery
execution and linking ta with tb, transforming the WHERE clause into a join condition.

select id from ta where exists (select aval from tb where tb.id = ta.id)

 Hash Join
 Hash Cond: (ta.id = tb.id)
 -> Seq Scan on ta
 -> Hash
 -> Seq Scan on tb

Optimized Plan
(Semi-Join represented as Hash Join)

--
 Seq Scan on ta
 Filter: (ANY

 (id = (hashed SubPlan 2).col1))
 SubPlan 2
 -> Seq Scan on tb

Initial Plan
(SeqScan with ANY filter)

EXISTS Subquery Transformation

19

Query Tree - Outer Query Structure

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Jointree

FromExpr
Quals: SubLink

Query

RangeTblRef 1 (“ta”)

The query contains a single
RangeTblEntry "ta" (Index = 1) and
one qual of type SubLink.

20

Query Tree - Subquery (SubLink) Expansion

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Jointree

FromExpr
Quals: SubLink

Jointree

FromExpr
RangeTblRef 1 (“tb”)

Query

Quals: aval = 1

Quals: tb.id = ta.id

RangeTblRef 1 (“ta”)

Subquery

During pull-up, this SubLink is
transformed into a semi-join for
efficient execution.

Quals

Var Description

varno: “Which table (or subquery) is this from?”

It’s a Range Table Entry (RTE) index - a 1-based
number pointing to the RangeTblEntry in the current
Query or SubQuery level.

typedef struct Var
{
 Expr xpr;
 /* expression header */
 Index varno;
 /* range table index */
 Index varlevelsup;
 /* levels up from current query */
 Oid vartype;
 /* column type */
 ...
} Var;

22

Detach Quals From Subquery Jointree

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Quals: SubLink

Jointree

FromExpr

(aval = 1) varno = 1, varlevelsup = 0

(tb.id = ta.id)

Subquery

Query
Detach all quals from the

subquery’s jointree:
jointree->quals = NULL.

tb.id: varno = 1, varlevelsup = 0

ta.id: varno = 1, varlevelsup = 1

Quals
RangeTblRef 1 (“tb”)

Update Vars in Subquery

If the Var is not an outer
reference, update its
varno using walker
OffsetVarNodes() by the
number of tables in the
main query.

(01)

24

Update Outer Varnos (OffsetVarNodes)

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Quals: SubLink

Jointree

FromExpr

(aval = 1) varno = 1, varlevelsup = 0

(tb.id = ta.id)

Subquery

Query Update Vars in the subquery - their
varno and RangeTblRef indexes

are incremented by the number of
RTEs in the parent FromExpr list

(only ta there - it is 1).

tb.id: varno = 1, varlevelsup = 0

ta.id: varno = 1, varlevelsup = 1

Quals
RangeTblRef 1 (“tb”)

Update Outer Varnos (OffsetVarNodes)

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Quals: SubLink

Jointree

FromExpr
RangeTblRef 1 2 (“tb”)

(aval = 1) varno = 1 2, varlevelsup = 0

(tb.id = ta.id)

Subquery

Query

tb.id: varno = 1 2, varlevelsup = 0

ta.id: varno = 1, varlevelsup = 1

Quals

Update all Vars in the subquery -
their varno and RangeTblRef

indexes are incremented by the
number of RTEs in the parent

FromExpr list.

Update Vars in Subquery

If the Var is an outer
reference, update its
varlevelsup using walker
IncrementVarSublevelsUp()
by -1.

(02)

If the Var is not an outer
reference, update its
varno using walker
OffsetVarNodes() by the
number of tables in the
main query.

(01)

27

27

Var Description

varlevelsup: How many query levels up from the
current query to reach the Var’s defining query?

It indicates how far up the query tree the
referenced variable is located.

typedef struct Var
{
 Expr xpr;
 /* expression header */
 Index varno;
 /* range table index */
 Index varlevelsup;
 /* levels up from current query */
 Oid vartype;
 /* column type */
 ...
} Var;

28

Query Tree - Subquery (SubLink) Expansion

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Jointree

FromExpr
Quals: SubLink

Jointree

FromExpr
RangeTblRef 1 (“tb”)

Query

Quals: aval = 1

Quals: tb.id = ta.id

RangeTblRef 1 (“ta”)

Subquery

Quals

Adjust Var Levels in Subquery

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Quals: SubLink

Jointree

FromExpr
RangeTblRef 2 (“tb”)

(aval = 1) varno = 2, varlevelsup = 0

(tb.id = ta.id)

Subquery

FromExpr
Update Vars in the subquery that
are not outer references — their
varlevelsup decreases by 1.

tb.id: varno = 2, varlevelsup = 0

ta.id: varno = 1, varlevelsup = 1 0

Quals

Remove SubLink Node After Pull-Up

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Jointree

FromExpr
Quals: SubLink

Jointree

FromExpr
RangeTblRef 1 (“tb”)

Query

aval = 1

tb.id = ta.id

RangeTblRef 1 (“ta”)

Subquery

Quals

The SubLink node is no longer
needed after pull-up.

Convert to SemiJoin

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Jointree

FromExpr

RangeTblRef 2 (“tb”)

Query Transform the pulled-up subquery
into a SemiJoin or AntiJoin. All
quals are now represented as join
conditions in the parent query.

JoinExpr SemiJoin

larg rarg

RangeTblRef 1 (“ta”)

Quals: tb.id = ta.id AND aval = 1

32

Deep Dive: EXISTS Pull-up and
Its Core Issue

PGDU 2025

Another EXISTS SubLink Example: Concept Summary

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 1 | 1
 3 | 1

tc: id | aid
 ----+-----
 3 | 1
 1 | 1

SELECT * FROM ta WHERE EXISTS (
 SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);

 id | val
----+-----
 1 | 1

Returns all tuples from ta
for which there exists

a pair of rows in tb and tc that
share the same id value

(tb.id = ta.id = tc.id).

34

Another EXISTS SubLink Example: Query Plan

 Seq Scan on ta (rows=1.00 loops=1)
 Filter: EXISTS(SubPlan 1)
 SubPlan 1
 -> Nested Loop (rows=0.50 loops=2)
 -> Seq Scan on tc (rows=0.50 loops=2)
 Filter: (ta.id = id)
 -> Seq Scan on tb (rows=1.00 loops=1)

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 1 | 1
 3 | 1

tc: id | aid
 ----+-----
 3 | 1
 1 | 1 SELECT * FROM ta WHERE EXISTS (

 SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);

SELECT * FROM ta WHERE EXISTS (
 SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);

 id | val
----+-----
 1 | 1

If a JoinExpr appears inside the subquery,
pull-up is stopped and a SemiJoin cannot

be constructed.

 Seq Scan on ta (rows=1.00 loops=1)
 Filter: EXISTS(SubPlan 1)
 SubPlan 1
 -> Nested Loop (rows=0.50 loops=2)
 -> Seq Scan on tc (rows=0.50 loops=2)
 Filter: (ta.id = id)
 -> Seq Scan on tb (rows=1.00 loops=1)

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 1 | 1
 3 | 1

tc: id | aid
 ----+-----
 3 | 1
 1 | 1 SELECT * FROM ta WHERE EXISTS (

 SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);

SELECT * FROM ta WHERE EXISTS (
 SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);

 id | val
----+-----
 1 | 1

The SubPlan must be executed once for
each row in ta.

36

Another EXISTS SubLink Example: Query Plan

Proposed Patch

Enable Pull-up of EXISTS Subqueries with Inner JOIN Refs to
Upper Query

Main benefit: the planner can consider join reordering and
earlier filtering.

https://commitfest.postgresql.org/
patch/5487/

37

Query Plan After Applying the Patch

 Nested Loop Semi Join (rows=1.00 loops=1)
 -> Seq Scan on ta (rows=2.00 loops=1)
 -> Nested Loop (rows=0.50 loops=2)
 -> Index Only Scan using tc_pkey on tc
(rows=0.50 loops=2)
 Index Cond: (id = ta.id)
 -> Seq Scan on tb (rows=1.00 loops=1)

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 1 | 1
 3 | 1

tc: id | aid
 ----+-----
 3 | 1
 1 | 1 SELECT * FROM ta WHERE EXISTS (

 SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);

SELECT * FROM ta WHERE EXISTS (
 SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);

 id | val
----+-----
 1 | 1

No semantic restriction prevents
constructing a SemiJoin here.

38

Another EXISTS SubLink Example: Join Expansion

SELECT tb.id as tb_id, tb.aval as tb_aval,
 tc.id as tc_id, tc.aid as ic_aid

FROM tb JOIN tc
ON true;

tb_id | tb_aval | tc_id | ic_aid
-------+---------+-------+--------
 1 | 1 | 3 | 2
 1 | 1 | 1 | 1
 3 | 1 | 3 | 2
 3 | 1 | 1 | 1

The join between tb and tc first forms all
possible row pairs before applying any

filtering conditions.

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 1 | 1
 3 | 1

tc: id | aid
 ----+-----
 3 | 1
 1 | 1

SELECT * FROM ta WHERE EXISTS (
 SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);

 id | val
----+-----
 1 | 1

39

SELECT tb.id as tb_id,
 tb.aval as tb_aval,
 tc.id as tc_id,
 tc.aid as ic_aid

FROM tb
JOIN tc

 ON tc.id in (select id from ta);
 tb_id | tb_aval | tc_id | ic_aid
---------+------------+--------+--------
 1 | 1 | 1 | 1

Another EXISTS SubLink Example: Filtering With ta

We keep only the combinations where
tc.id matches an id from ta.

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 1 | 1
 3 | 1

SELECT * FROM ta WHERE EXISTS (
 SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);

 id | val
----+-----
 1 | 1

tc: id | aid
 ----+-----
 3 | 1
 1 | 1

40

Query Tree

select id from ta where exists (select aval from tb join tc on tc.id = ta.id)

Jointree

FromExpr
Quals: SubLink

Jointree

JoinExpr
RangeTblRef 1 (“tb”)

Query

RangeTblRef 2 (“tc”)

Quals: tc.id = ta.id

RangeTblRef 1 (“ta”)

Subquery

Let’s look at how the subquery is
transformed

SubQuery Tree: Making Cartesian Product

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Quals: SubLink

Jointree

JoinExpr
RangeTblRef 1 (“tb”)

RangeTblRef 2 (“tc”)

Subquery

Replace the JoinExpr qual that will
be pulled up into the outer
JoinTree with a BoolExpr(true) to
produce a Cartesian product
between the tables tb and tc.

(tc.id = ta.id)

tc.id: varno = 2, varlevelsup = 0

ta.id: varno = 1, varlevelsup = 1

Quals

BoolExpr (true)

SubQuery Tree: Adjust Vars

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Quals: SubLink

Jointree

JoinExpr
RangeTblRef 1 2 (“tb”)

(tc.id = ta.id)

Update all var in the subquery like
we did it before.

tc.id: varno = 2 3, varlevelsup = 0

RangeTblRef 2 3 (“tc”)

Quals: SubLink

Jointree

JoinExpr

Subquery

RangeTblRef 1 2 (“tb”)

Quals

BoolExpr (true) ta.id: varno = 1, varlevelsup = 1 0

Final Query Tree

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Jointree

FromExpr

RangeTblRef 2 (“tb”)

Query Generate a SemiJoin between the
subquery and the inner join
(tb and tc).
Qual (ta.id = tc.id) is now join
conditions.

JoinExpr SemiJoin

RangeTblRef 1 (“ta”)

Quals: tc.id = ta.id
RangeTblRef 3 (“tc”)

JoinExpr InnerJoin

Quals: BoolExpr (true)
44

Proposed Patch

Enables pull-up of EXISTS subqueries that contain INNER
JOINs. Moves safe quals upward to enable join reordering
and reduce redundant subquery scans.

Main development points:

● Introduces a mutator that collects outer quals and
replaces them with a BoolExpr(TRUE).

● Stops transformation if:
○ The subquery contains volatile quals;
○ The mutator encounters OUTER JOINs with outer

references, since hoisting would break
null-preserving behavior. https://commitfest.postgresql.org/

patch/5487/

45

How the Mutator Works

Recursively walks the subquery join tree, examining FROM and JOIN clauses in the subquery.

Jointree

FromExpr JoinExpr

RangeTblRef1 larg

RangeTblRef2 rarg

● Gathers join quals with upper reference.
● Replaces affected join quals with TRUE.
● Only INNER JOINs are eligible for qual

hoisting.
● If the join contains volatile functions

(like random()), or if recursion fails, the
transformation stops.

● Stops pull-up transformation if the
mutator encounters OUTER JOINs with
outer references, since hoisting would
break null-preserving behavior.

hoist_parent_quals_jointree_mutator()

46

Test Results on JOB Benchmark

Rewrote selected queries using EXISTS expressions. For example, query 3a.sql:

47

SELECT MIN(t.title) AS movie_title
FROM keyword AS k,
 movie_info AS mi,
 movie_keyword AS mk,
 title AS t
WHERE k.keyword LIKE '%sequel%'
 AND mi.info IN ('Sweden', 'Norway', …)
 AND t.production_year > 2005
 AND t.id = mi.movie_id
 AND t.id = mk.movie_id
 AND mk.movie_id = mi.movie_id
 AND k.id = mk.keyword_id;

SELECT MIN(t.title) AS movie_title
FROM movie_info AS mi, movie_keyword AS mk,
title AS t
WHERE
 t.id = mi.movie_id AND t.id = mk.movie_id
 AND mk.movie_id = mi.movie_id
 AND exists (
 select 1 from movie_companies mc
 JOIN keyword AS k on k.id = mk.keyword_id
 WHERE
 mc.note IN ('Sweden',...)
 AND mc.movie_id = mi.movie_id
 AND k.keyword LIKE '%sequel%')
 AND t.production_year > 2005;

● Branch: test-exists-pull-up

● Rewritten queries located in subselect_test directory

● Queries used for testing: 3a.sql, 5a.sql, 6a.sql, 20b.sql

● Detailed testing instructions provided in the README

JOB Benchmark Testing Setup

https://github.com/Alena0704/jo-b
ench/tree/test-exists-pull-up

48

Performance Results on JOB Benchmark

49

The patch significantly reduces total runtime for queries rewritten with EXISTS sublinks.

Enables pull-up of EXISTS subqueries that contain INNER
JOINs. Moves safe quals upward to enable join reordering
and reduce redundant subquery scans.

Main development points:

● Introduces a mutator that collects outer quals and
replaces them with a BoolExpr(TRUE).

● Stops transformation if:
○ The subquery contains volatile quals;
○ The mutator encounters OUTER JOINs with outer

references, since hoisting would break
null-preserving behavior.

One Problem Remaining: Outer Joins Inside Subqueries

https://commitfest.postgresql.org/
patch/5487/

50

Let’s Consider it: Exists Sublink with Left Join

SELECT * FROM ta WHERE EXISTS (
 SELECT 1 FROM tb LEFT JOIN tc

ON ta.id = tc.id);

 id | val
----+-----
 1 | 1

51

The join between tb and tc pairs their rows based on ta.id = tc.id.
For each row in ta, the subquery checks if at least one matching pair exists.

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 1 | 1

tc: id | aid
 ----+-----
 2 | 2

There is a Left Join between tb and tc
tables, so we need to consider all tuples

from table tb but return only matched
with table ta.

SELECT tb.id as tb_id,
 tb.aval as tb_aval,
 tc.id as tc_id,
 tc.aid as ic_aid

FROM tb LEFT JOIN tc
ON tc.id in (select id from ta);

 tb_id | tb_aval | tc_id | ic_aid
---------+------------+--------+----------
 1 | 1 | 2 | 2

Exists Subquery with Left Join

SELECT ta.* FROM ta WHERE EXISTS (
 SELECT 1 FROM tb LEFT JOIN tc

ON ta.id = tc.id);

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 1 | 1

tc: id | aid
 ----+-----
 2 | 2

52

The tc.id value is returned because it
matches ta.id as well.

SELECT tb.id as tb_id,
 tb.aval as tb_aval,
 tc.id as tc_id,
 tc.aid as ic_aid

FROM tb LEFT JOIN tc
ON tc.id in (select id from ta);

 tb_id | tb_aval | tc_id | ic_aid
---------+------------+--------+----------
 1 | 1 | 2 | 2

Exists Subquery with Left Join

SELECT ta.* FROM ta WHERE EXISTS (
 SELECT 1 FROM tb LEFT JOIN tc

ON ta.id = tc.id);

53

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 1 | 1

tc: id | aid
 ----+-----
 2 | 2

Table tc contains values that don’t
match ta. When a tc value doesn’t

match ta, the LEFT JOIN still returns a
row with nulls.

Exists Subquery with Left Join

SELECT ta.* FROM ta WHERE EXISTS (
 SELECT 1 FROM tb LEFT JOIN tc

ON ta.id = tc.id);

54

SELECT tb.id as tb_id,
 tb.aval as tb_aval,
 tc.id as tc_id,
 tc.aid as ic_aid

FROM tb LEFT JOIN tc
ON tc.id in (select id from ta);

 tb_id | tb_aval | tc_id | ic_aid
---------+------------+--------+----------
 1 | 1 | |

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 1 | 1

tc: id | aid
 ----+-----
 3 | 3

Table tb contains values that don’t
match ta. The LEFT JOIN still produces

a null-extended row - but that tb.id is
unrelated to ta.id.

Exists Subquery with Left Join

SELECT ta.* FROM ta WHERE EXISTS (
 SELECT 1 FROM tb LEFT JOIN tc

ON ta.id = tc.id);

55

SELECT tb.id as tb_id,
 tb.aval as tb_aval,
 tc.id as tc_id,
 tc.aid as ic_aid

FROM tb LEFT JOIN tc
ON tc.id in (select id from ta);

 tb_id | tb_aval | tc_id | ic_aid
---------+------------+--------+----------
 3 | 3 | |

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 3 | 3

tc: id | aid
 ----+-----
 3 | 3

Exists Subquery with Left Join

SELECT * FROM ta WHERE EXISTS (
 SELECT 1 FROM tb LEFT JOIN tc

ON ta.id = tc.id);

 id | val
----+-----

The EXISTS condition fails only if no tb.id matches ta.id, or if tb is empty.
tc values don’t affect the result completely.

56

ta: id | val
 ----+-----
 1 | 1
 2 | 2

tb: id | aval
 ----+------
 3 | 3

tc: id | aid
 ----+-----
 3 | 3

MySQL: Different Approach

SELECT 1 FROM ta WHERE EXISTS (SELECT 1 FROM tb LEFT OUTER JOIN tc
ON ta.id = tc.id);

+--
| -> Remove duplicate ta rows using temporary table (weedout) (rows=2 loops=1)
 -> Nested loop left join (rows=4 loops=1)
 -> Inner hash join (no condition) (rows=4 loops=1)
 -> Covering index scan on tb using PRIMARY (rows=2 loops=1)
 -> Hash
 -> Table scan on ta (rows=2 loops=1)
 -> Single-row covering index lookup on tc using PRIMARY (id=ta.id) (rows=0 loops=4)
 |

57

MySQL seems to pull the referenced table into the subquery, creating a Cartesian-like join
between ta and tb and removing duplicate LEFT JOIN results for ta.id.

MySQL: Different Approach

SELECT 1 FROM ta WHERE EXISTS
(SELECT 1 FROM tb LEFT OUTER JOIN tc

 ON ta.id = tc.id);

Distinct ta.id

Nested Loop Left Join

Inner Hash Join (no condition)

tb ta

tc (id = ta.id)

58

Can Postgres Do the Same with Pull-up Optimization?

SELECT ta.* FROM ta WHERE EXISTS (
 SELECT 1 FROM tb LEFT JOIN tc

ON ta.id = tc.id);

With the LATERAL path:

● Builds a SEMI/ANTI JoinExpr with NULL
quals, converting the subquery into a
LATERAL RTE.

● Keeps all outer references within the
pulled-up subquery.

● The planner can’t generate hash or merge
semijoin paths - only Nested Loops are
used, scanning the inner per outer row.

● Prevents creation of equivalence classes.
● The planner can’t reorder this input across

others, which limits global join-order
optimization.

 Nested Loop Semi Join
 Disabled: true
 -> Seq Scan on ta
 -> Seq Scan on tb

59

Exploring Pull-down in Postgres

SELECT ta.* FROM ta WHERE EXISTS
(SELECT 1 FROM tb LEFT JOIN tc ON ta.id = tc.id);

 Unique ta.id
 -> Nested Loop Left Join
 -> Nested Loop
 -> Seq Scan on tb
 -> Seq Scan on ta
 -> Seq Scan tc
 Filter: id = ta.id

Only one drawback - the invasive
development and more tree walkers,
but it looks like we don’t have a
choice

60

Conclusion and Future Development

PGDU 2025

Conclusion And Further Development

● PostgreSQL already supports several forms of pull-up optimization that can eliminate
redundant subquery execution and unlock higher-level planner optimizations, such as
global join-order search.

● Pull-up optimizations apply only when the subquery is simple.
● The transformation is complex because it must update all elements tied to a

subquery.
● Two current limitations remain for EXISTS sublinks:

○ Subqueries with INNER JOINs.
○ Subqueries with OUTER JOINs that reference outer variables.

● The proposed patch resolves the first case but leaves the second as an open
problem.

● MySQL’s pull-down optimization could theoretically address this limitation — but its
implementation would require highly invasive planner changes.

62

Feel Free to Review My Patch

Enables pull-up of EXISTS subqueries that contain INNER
JOINs. Moves safe quals upward to enable join reordering
and reduce redundant subquery scans.

Main development points:

● Introduces a mutator that collects outer quals and
replaces them with a BoolExpr(TRUE).

● Stops transformation if:
○ The subquery contains volatile quals;
○ The mutator encounters OUTER JOINs with outer

references, since hoisting would break
null-preserving behavior. https://commitfest.postgresql.org/

patch/5487/

63

Thank You for Your Attention!

EMAIL: alena.ribackina@yandex.ru
LinkedIn: alena-rybakina

PGDU 2025

