PGDU 2025 Po%gres Pro

Pull-up Optimization
in the Postgres Planner

Alena Rybakina

About Me

Developer in Postgres Professional since
2021

W ivorsg 7 8

Make contribution in PostgreSQL since 2023: | \(OF

* OR to ANY transformation
» Values to ANY transformation
* Others

Participate in development of extensions:

« AQO
* Replaning

https://github.com/postgres/postgres/commit/d4378c0005e61b1bb78e88097ea6efcdddbe2d6e
https://github.com/postgres/postgres/commit/d48d2e2dc8be50d3ca13305b5699384329b15433
https://github.com/postgrespro/aqo
https://postgrespro.com/docs/enterprise/16/realtime-query-replanning

Outline of the Report

PGDU 2025 Pogzgres Pro

Pull-up Optimizations in Postgres

What Is Pull-up Optimization

Pull-up optimization rewrites the query tree by flattening subqueries into the parent query, so
they are not executed as nested units.

This exposes higher-level planner optimizations such as global join-order search and
construction of Equivalence Classes.

Pull-up Optimizations in Postgres

Pull-up optimization rewrites the query tree by flattening subqueries into the parent query, so
they are not executed as nested units.
This exposes higher-level planner optimizations such as global join-order search and

construction of Equivalence Classes.
e RangeTblRef: inspect the referenced entry: |
o RTE_SUBQUERY W
o simple UNION ALL or VALUES clauses
o SubLink quals

e FromExpr: recurse into each child t
e JoinExpr: recurse into left (larg) and right (rarg) RangeTblRef2
arguments

pull_up_subqueries_recurse() walks the jointree and
decides what to do based on the node type:

Simple VALUES

SELECT v.x + 1 ASy FROM|(VALUES (42, 'eu’)) AS v(x, r) WHERE v.x = 0;

Values Scan on "*VALUES*" (actual time=0.007..0.007 rows=0.00 loops=1)
Filter: (column1 > 0)

@

Result (actual time=0.004..0.005 rows=0.00 loops=1)
One-Time Filter: false

Simple VALUES

SELECT v.x + 1 ASy FROM (VALUES (42, 'eu’)) AS v(x, r)
WHERE v.x = 0;

The subquery is transformed

into one-time filter logic — o . _
evaluated once since the * Result |(actual time=0.004..0.005 rows=0.00 loops=1)

condition is constant. One-Time Filter: false

Simple VALUES

SELECT v.x + 1 ASy FROM (VALUES (42, 'eu’)) AS v(x, r)
WHERE v.x = 0;

The One-Time Filter is formed
from the result of v.x = 0, but Result (actual time=0.004..0.005 rows=0.00 loops=1)
due to x = 42, then we need to
check 42 =0, so it is false.

One-Time Filter:; false]

PGDU 2025 Pogggres Pro

Types of Pull-up Optimizations in Postgres

Main Types of Pull-up optimizations in Postgres

e Simple VALUES - Flattened directly into the upper query as a
RangeTblEntry; a trivial transformation.
e Sublinks - Subqueries embedded inside expressions that can be
pulled up if semantically safe:
o ANY / ALL Subquery Expressions - Transformed into join forms
when possible to leverage join planning.
o EXISTS Subquery Expressions - Transformed into semi-joins;
special handling due to correlation semantics.

11

EXISTS Subquery Transformation

select id from ta where|exists (select aval from tb where tb.id = ta.id)

We return id values from ta only when they match id values from tb.

This can be transformed into a Semi-Join.

Initial Plan Semi-Join Visualization
(SeqScan with ANY filter)

Table A 1% Table B
Seq Scan on ta » === e
Fiter: (ANY ulofal | [felafs
(id = (hashed SubPlan 2).col1)) a3 | b3 | c3

SubPlan 2 i

alb]|c

-> Seq Scanontb 22bl C2

a3 | b3 | c3

12

EXISTS Subquery Transformation

select id from ta wherelexists (select aval from tb where tb.id = ta.id)

The planner replaces EXISTS with a Semi-Join for efficiency, avoiding per-row subquery

execution and linking ta with tb, transforming the WHERE clause into a join condition.

Initial Plan
(SeqgScan with ANY filter)

Optimized Plan
(Semi-Join represented as Hash Join)

Seq Scan onta
Filter: (ANY

(id = (hashed SubPlan 2).col1))

»

—— Hash Cond: (ta.id = tb.id)

SubPlan 2
-> Seq Scan ontb

Hash Join

-> Seq Scan on ta
-> Hash

-> Seq Scan ontb
13

ANY / IN Subquery Transformation

select id from ta where ta.vallin (select aval from tb where tb.id = ta.id)

The planner replaces the IN with an Inner Join for efficiency, avoiding per-row subquery

execution and linking ta with tb, transforming the WHERE and IN clause into a join condition.

Initial Plan Optimized Plan
(SeqgScan with ANY filter)

Seq Scan on ta » Hash Join

Filter: (ANY (val = (SubPlan 1).col1)) Hash Cond:
SubPlan 1 ——|((ta.val = tb.aval)|AND ta.id = tb.id))

-> |ndex Scan using tb_pkey on tb

Index Cond; (id = ta.id) -> Hash
-> Seq Scanontb 14

-> Seq Scan on ta T

NOT Exists Subquery Transformation

select id from ta where

NOT exists (select aval from tb where tb.id = ta.idl)

We return id values from ta only when they DON'T match id values from tb

This can be transformed into an Anti-Join.

Initial Plan Anti-Join Visualization
(SeqScan with NOT ANY filter)

Seq Scan onta

Table A AAB Table B
al|b

c b|d]|e
Filter: ((NOT (ANY 2 ble 2|3
(id = (hashed SubPlan 2).col1))) T
SubPlan 2
-> Seq Scan ontb aTab;eAc
al |bi|c

15

NOT Exists Subquery Transformation

select id from ta where NOT exists (select aval from tb where tb.id = ta.idl)

The planner replaces EXISTS with a Semi-Join for efficiency, avoiding per-row subquery

execution and linking ta with tb, transforming the WHERE clause into a join condition.

Initial Plan Optimized Plan
(SegScan with NOT ANY filter) (Anti-doin represented as Hash Anti Join)

Seq Scanon ta » Hash Anti Join

Filter: (NOT ANY [HashCond: (ta.id = tb.id)
(id = (hashed SubPlan 2).col1)) -> Seq Scan on ta
SubPlan 2 -> Hash
-> Seq Scan ontb -> Seq Scanon tb

16

PGDU 2025 Pogzgres Pro

The Transformation Pipeline

How Pull-up Works: Main Planner Pipeline

General pipeline of pull-up transformation:

e Applicable if the subquery is simple — i.e., has no grouping, aggregates, SRFs, DISTINCT,
ORDER BY, or LIMIT/OFFSET clauses.
e Process subqueries:
o Preprocess relation RTEs.
o Pull up any SubLinks; their own children are flattened first.
e Adjust varno references and decrement varlevelsup for outer variables inside the
subquery.

18

EXISTS Subquery Transformation

select id from ta wherelexists (select aval from tb where tb.id = ta.id)

The planner replaces EXISTS with a Semi-Join for efficiency, avoiding per-row subquery

execution and linking ta with tb, transforming the WHERE clause into a join condition.

Initial Plan
(SeqgScan with ANY filter)

Optimized Plan
(Semi-Join represented as Hash Join)

Seq Scan onta
Filter: (ANY

(id = (hashed SubPlan 2).col1))

»

—— Hash Cond: (ta.id = tb.id)

SubPlan 2
-> Seq Scan ontb

Hash Join

-> Seq Scan on ta
-> Hash

-> Seq Scan ontb
19

Query Tree - Outer Query Structure

lselect id from ta where exists|(se|ect aval from tb where tb.id = ta.id and tb.aval = 1)

E Jointree

The query contains a single

RangeTblEntry "ta" (Index = 1) and
one qual of type SubLink.

FromExpr

Quals: SubLink

mma RangeTblRef 1 (“ta”)

20

Query Tree - Subquery (SubLink) Expansion

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

E Jointree

During pull-up, this SubLink is

transformed into a semi-join for

: efficient execution.
QuaIS' SubLink
L> RangeTblRef 1 (“tb”)

mma RangeTblRef 1 (“ta”) qual -
uals: aval =

FromExpr

Quals: tb.id = ta.id

_

Var Description

typedef struct Var
{
Expr xpr;
/* expression header */
varno: “Which table (or subquery) is this from?” Index varno;
/* range table index */
It's a Range Table Entry (RTE) index - a 1-based Index varlevelsup;
number pointing to the RangeTblEntry in the current /* levels up from current query */
Query or SubQuery level. Oid vartype;

/* column type */

} Var;

22

Detach Quals From Subquery Jointree

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Detach all quals from the
subquery’s jointree:

Quals: SubLink

Subquery Jointree jointree->quals = NULL.

|-> FromExpr

Quals

RangeTblRef 1 (“tb”)

g (aval = 1) varno =1, varlevelsup = 0

(tb.id = ta.id)

tb.id: varno = 1, varlevelsup = 0

ta.id: varno = 1, varlevelsup = 1

Update Vars in Subquery

/

If the Var is not an outer
reference, update its
varno using walker
OffsetVarNodes() by the
number of tables in the
main query.

(o

24

Update Outer Varnos (OffsetVarNodes)

select id from ta where exists

(select aval from tb where tb.id = ta.id and tb.aval = 1)

Update Vars in the subquery - their
varno and RangeTblIRef indexes
are incremented by the number of

RTEs in the parent FromExpr list
(only ta there - itis 1).

RangeTblRef 1 (“tb”)

g (aval = 1) varno =1, varlevelsup = 0

(tb.id = ta.id)

tb.id: varno = 1, varlevelsup = 0

ta.id: varno = 1, varlevelsup = 1

Update Outer Varnos (OffsetVarNodes)

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Update all Vars in the subquery -
their varno and RangeTblRef
indexes are incremented by the

Quals: SubLink

number of RTEs in the parent

Subquery Jointree .
FromExpr list.

|-> FromExpr

Quals

RangeTblRef 2 (“tb”)

g (aval =1)varno = 2, varlevelsup =0

(tb.id = ta.id)

tb.id: varno = 2, varlevelsup =0

ta.id: varno = 1, varlevelsup = 1

Update Vars in Subquery

[

If the Var is not an outer

reference, update its
varno using walker

OffsetVarNodes() by the
number of tables in the

main query.

(07)

)

If the Var is an outer
reference, update its
varlevelsup using walker
IncrementVarSublevelsUp()
by -1.

27

Var Description

typedef struct Var
{
Expr xpr;
/* expression header */
Index varno;
/* range table index */
Index varlevelsup;
/* levels up from current query */
Oid vartype;
/* column type */

varlevelsup: How many query levels up from the
current query to reach the Var’s defining query?

It indicates how far up the query tree the
referenced variable is located.

} Var;

28

Query Tree - Subquery (SubLink) Expansion

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

E Jointree

FromExpr

Quals: SubLink
L> RangeTblRef 1 (“tb”)

mma RangeTblRef 1 (“ta”) qual =
uals: aval =

Quals: tb.id %

Adjust Var Levels in Subquery

(select aval from tb where tb.id = ta.id and tb.aval = 1)

select id from ta where exists

Quals: SubLink

Update Vars in the subquery that
are not outer references — their

varlevelsup decreases by 1.

Subquery Jointree

|-> FromExpr

Quals

RangeTbIRef 2 (“tb”)

g (aval = 1) varno =2, varlevelsup = 0

(tb.id = ta.id)

tb.id: varno = 2, varlevelsup = 0

ta.id: varno = 1, varlevelsup = 0

Remove SubLink Node After Pull-Up

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

E Jointree

The SubLink node is no longer
needed after pull-up.

= FromExpr
L. '<:SubLink

Jointree

FromExpr

— DI -

RangeTblRef 1 (“tb”)

Convert to SemiJoin

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Transform the pulled-up subquery
into a SemiJoin or AntiJoin. All
quals are now represented as join
conditions in the parent query.

Jointree

FromExpr

JoinExpr SemiJoin

RangeTblRef 1 (“ta”) 4 RangeTblRef 2 (“tb”)

= Quals: tb.id =ta.id AND aval =1

32

PGDU 2025 Pogggres Pro

Deep Dive: EXISTS Pull-up and
Its Core Issue

Another EXISTS SubLink Example: Concept Summary

ta: id | val tb: id | aval tc:id | aid

2| 2 31 1 1] 1 Returns all tuples from ta
for which there exists

a pair of rows in tb and tc that

share the same id value
SELECT 1 FROM tb JOIN tc ON ta.id = tc.id); (tb.id =ta.id = tC.id).

SELECT * FROM ta WHERE EXISTS (

34

Another EXISTS SubLink Example: Query Plan

ta: id | val tb:id | aval tc:id | aid If a JoinExpr appears inside the subquery,
' ' ' pull-up is stopped and a SemiJoin cannot
I L o be constructed.
1] 1 1] 1 3] 1
2| 2 3| 1 1] 1 SELECT * FROM ta WHERE EXISTS (

SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);
SELECT * FROM ta WHERE EXISTS (

SELECT 1 FROM tb JOIN tc ON ta.id = tc.id); Seq Scan on ta (rows=1.00 loops=1)
Filter: EXISTS(SubPlan 1)
" SubPlan 1)
id | val -> Nested Loop (rows=0.50 loops=2)
s -> Seq Scan on tc (rows=0.50 loops=2)
11 1 Filter: (ta.id = id)
-> Seq Scan on tb (rows=1.00 loops=1)
. J

Another EXISTS SubLink Example: Query Plan

tazid|val th:id|aval tc:id|aid The SubPlan must be executed once for
e e e N each row in ta.
11 1 11 1 3] 1
2| 2 3] 1 11 1 SELECT * FROM ta WHERE EXISTS (

SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);
SELECT * FROM ta WHERE EXISTS (

SELECT 1 FROM tb JOIN tc ON ta.id = tc.id); Seq Scan on ta (rows=1.00 loops=1)
Filter: EXISTS(SubPlan 1)
SubPlan 1
id | val -> Nested Loop (rows=0.50 [loops=2)
e -> Seq Scan on tc (rows=0.50 loops=2)
1] 1 Filter: (ta.id = id)

-> Seq Scan on tb (rows=1.00 loops=1)

36

Proposed Patch

Enable Pull-up of EXISTS Subqueries with Inner JOIN Refs to
Upper Query

Main benefit: the planner can consider join reordering and
earlier filtering.

Pull-up subquery if INNER JOIN-ON contains refs to upper-query

Edit Comment/Review > Change Status ~

D 5487

Title Pull-up subquery if INNER JOIN-ON contains refs to upper-query

CI (CFBot) OO0 OO O OO Copy it checkout commands

Stats (from CFBot) Patch version: v6, Patch count: 1, First patch: +1487-46, All patches: +1487-46

Topic Performance

Tags .

— https://commitfest.postgresql.org/

patch/5487/

37

Query Plan After Applying the Patch

tazid|val tbrid|aval tc:id|aid No semantic restriction prevents
e Foooee e PR constructing a SemiJoin here.
1] 1 11 1 3| 1
2| 2 3] 1 11 1 SELECT * FROM ta WHERE EXISTS (

SELECT 1 FROM tb JOIN tc ON ta.id = tc.id);

SELECT * FROM ta WHERE EXISTS (

SELECT 1 FROM tb JOIN tc ON ta.id = tc.id): Nisgeequsoé’aanfn"t';J?rZ'Wg?;v 831|;,000p|30-01p)3=1)

-> Nested Loop (rows=0.50 loops=2)

id | val -> Index Only Scan using tc_pkey on tc
e e (rows=0.50 loops=2)
11 1 Index Cond: (id = ta.id)

-> Seq Scan on tb (rows=1.00 loops=1)
38

Another EXISTS SubLink Example: Join Expansion

ta:id | val tb:id | aval tc:id| aid The jo_in between-tb and tc first fprms all
possible row pairs before applying any
I L T filtering conditions.
1] 1 1] 1 3| 1
2| 2 3] 1 11 1 SELECT tb.id as tb_id, tb.aval as tb_aval,
tc.id as tc_id, tc.aid as ic_aid
FROM tb JOIN tc
SELECT * FROM ta WHERE EXISTS (ON true:
SELECT 1 FROM tb JOIN tc ON ta.id = tc.id); tb_id | tb_aval | tc_id | ic_aid
id | val T 11 30 2
I 1 1] 1] 1
1] 1 31 1] 3| 2
31 11 1] 1

39

Another EXISTS SubLink Example: Filtering With ta

taid|val tb:id|aval tc:id|aid We keep only the combinations where
T e P tc.id matches an id from ta.
1] 1 11 1 3] 1
2| 2 31 1 1] 1 SELECT tb.id as tb_id,
tb.aval as tb_aval,
tc.id as tc_id,
SELECT * FROM ta WHERE EXISTS (tc.aid as ic_aid
SELECT 1 FROM tb JOIN tc ON ta.id = tc.id); FROM tb
JOIN tc
id | val . ON tc.id in (select id from ta);
T tb_id | tb_aval [tc_id [ic_aid
1] 1 * T
1] 1 1] 1

40

Query Tree

select id from ta where exists (select aval from tb join tc on tc.id = ta.id)

E Jointree

Let's look at how the subquery is

transformed

> FromExpr -

mma RangeTblRef 1 (“ta”)

> QuaIS' SubLink

Lm

RangeTblRef 2 (“tc”)

mmmmm—— RangeTblRef 1 (“tb”)

Quals: tc.id = ta.id

SubQuery Tree: Making Cartesian Product

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Replace the JoinExpr qual that will

be pulled up into the outer
JoinTree with a BoolExpr(true) to
produce a Cartesian product
between the tables tb and tc.

Quals: SubLink

Subquery Jointree

JoinExpr
RangeTblRef 1 (“tb")

RangeTblRef 2 (“tc”)

..... X TS (tc.id = ta.id)

BoolExpr (true)

tc.id: varno = 2, varlevelsup = 0

ta.id: varno = 1, varlevelsup = 1

SubQuery Tree: Adjust Vars

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Update all var in the subquery like
we did it before.

Quals: SubLink

Subquery Jointree

JoinExpr

RangeTblRef 2 (“tb”)

4 RangeTblRef 3 (“tc”)

RN (tc.id = ta.id)

BoolExpr (true)

tc.id: varno = 3, varlevelsup =0

ta.id: varno = 1, varlevelsup = 0

Final Query Tree

select id from ta where exists (select aval from tb where tb.id = ta.id and tb.aval = 1)

Generate a SemiJoin between the
subquery and the inner join

Jointree

(tb and tc).
Qual (ta.id = tc.id) is now join
conditions.

FromExpr

JoinExpr SemiJoin

\ Y
()
RangeTblRef 1 (“ta”) JoinExpr InnerJoin
e RangeTblRef 2 (“tb”)

e RangeTblRef 3 (“tc”
[Quals: tc.id = ta.id (“tc”)
g Quals: BoolExpr (true)

44

Proposed Patch

Enables pull-up of EXISTS subqueries that contain INNER
JOINs. Moves safe quals upward to enable join reordering
and reduce redundant subquery scans.

Main development points:

e Introduces a mutator that collects outer quals and
replaces them with a BoolExpr(TRUE).
e Stops transformation if:
o The subquery contains volatile quals;
o The mutator encounters OUTER JOINs with outer
references, since hoisting would break
null-preserving behavior.

https://commitfest.postgresql.org/
patch/5487/

45

How the Mutator Works

Recursively walks the subquery join tree, examining FROM and JOIN clauses in the subquery.

hoist_parent_quals_jointree_mutator()

y

RangeTblRef1

RangeTblRef2

Gathers join quals with upper reference.
Replaces affected join quals with TRUE.
Only INNER JOINs are eligible for qual
hoisting.

If the join contains volatile functions
(like random()), or if recursion fails, the
transformation stops.

Stops pull-up transformation if the
mutator encounters OUTER JOINs with
outer references, since hoisting would
break null-preserving behavior.

46

Test Results on JOB Benchmark

Rewrote selected queries using EXISTS expressions. For example, query 3a.sql:

SELECT MIN(t.title) AS movie_title

LG NS - e St FROM movie_info AS mi, movie_keyword AS mk,

FROM keyword AS k, fitle AS t
movie_info AS mi, WHERE
movie_keyword AS mk, t.id = mi.movie_id AND t.id = mk.movie_id
title AS t AND mk.movie_id = mi.movie_id
WHERE k.keyword LIKE '%sequel%' AND exists (
AND mi.info IN (‘Sweden, 'Norway, ...) select 1 from movie_com.panies mc .
AND t.production_year > 2005 d\(/)I_III\ElII?(Eyword AS k on k.id = mk.keyword_id
AND t'!d - m'-mOV',e—'Fj mc.note IN ('Sweden’,...)
AND t.id = mk.movie_id AND mc.movie_id = mi.movie_id
AND mk.movie_id = mi.movie_id AND k.keyword LIKE '%sequel%')
AND k.id = mk.keyword_id; AND t.production_year > 2005;

47

JOB Benchmark Testing Setup

e Branch: test-exists-pull-up

e Rewritten queries located in subselect_test directory
e Queries used for testing: 3a.sql, 5a.sql, 6a.sql, 20b.sql
e Detailed testing instructions provided in the README

https://github.com/Alena0704/jo-b
ench/tree/test-exists-pull-up

48

Performance Results on JOB Benchmark

The patch significantly reduces total runtime for queries rewritten with EXISTS sublinks.

Total Execution Time of JOB Queries (With and Without Patch)

20b_rewritten.sql 3a_rewritten.sql 5a_rewritten.sql 6a_rewritten.sql

Log Total Time
N w H (6] D ~l

Vo [

JOB Queries

M with patch W without patch
49

One Problem Remaining: Outer Joins Inside Subqueries

Enables pull-up of EXISTS subqueries that contain INNER
JOINs. Moves safe quals upward to enable join reordering
and reduce redundant subquery scans.

Main development points:

e Introduces a mutator that collects outer quals and
replaces them with a BoolExpr(TRUE).
e | Stops transformation if:
o The subquery contains volatile quals;
> The mutator encounters OUTER JOINs with outer
references, since hoisting would break
null-preserving behavior.

https://commitfest.postgresql.org/
patch/5487/

50

Let's Consider it; Exists Sublink with Left Join

The join between tb and tc pairs their rows based on ta.id = tc.id.
For each row in ta, the subquery checks if at least one matching pair exists.

SELECT * FROM ta WHERE EXISTS (
SELECT 1 FROM tb LEFT JOIN tc

ta: id | val tb:id |aval tc:id| aid ON ta.id = tc.id)
e el e — e
11 1 11 1 21 2 id | val
2| 2 --:I--ll----‘l--

o1

Exists Subquery with Left Join

SELECT ta.* FROM ta WHERE EXISTS (

SELECT 1 FROM tb LEFT JOIN tc
ON ta.id = tc.id);

ta: id | val tb:id |aval tc:id| aid

There is a Left Join between tb and tc
tables, so we need to consider all tuples

from table tb but return only matched
with table ta.

SELECT tb.id as tb_id,
tb.aval as tb_aval,
tc.id as tc_id,
tc.aid as ic_aid

FROM tb LEFT JOIN tc

ON tc.id in (select id from ta);

tb_id | tb_aval | tc_id | ic_aid

1] 1 2| 2

52

Exists Subquery with Left Join

SELECT ta.* FROM ta WHERE EXISTS (

SELECT 1 FROM tb LEFT JOIN tc
ON ta.id = tc.id);

ta: id | val tb:id |aval tc:id| aid

The tc.id value is returned because it

matches ta.id as well.

SELECT tb.id as tb_id,
tb.aval as tb_aval,
tc.id as tc_id,
tc.aid as ic_aid

FROM tb LEFT JOIN tc

ON tc.id in (select id from ta);

tb_id | tb_aval ||tc_id | ic_aid

d

1] 11 2] 2

53

Exists Subquery with Left Join

SELECT ta.* FROM ta WHERE EXISTS (

SELECT 1 FROM tb LEFT JOIN tc
ON ta.id = tc.id);

ta: id | val tb:id |aval tc:id| aid

Table tc contains values that don't
match ta. When a tc value doesn't

match ta, the LEFT JOIN still returns a
row with nulls.

SELECT tb.id as tb_id,
tb.aval as tb_aval,
tc.id as tc_id,
tc.aid as ic_aid

FROM tb LEFT JOIN tc

ON tc.id in (select id from ta);

tb_id | tb_aval [tc_id lic_aid

- 4

1 1[|

o4

Exists Subquery with Left Join

SELECT ta.* FROM ta WHERE EXISTS (

SELECT 1 FROM tb LEFT JOIN tc
ON ta.id = tc.id);

ta: id | val tb:id |aval tc:id| aid

Table tb contains values that don't
match ta. The LEFT JOIN still produces

a null-extended row - but that tb.id is
unrelated to ta.id.

SELECT tb.id as tb_id,
tb.aval as tb_aval,
tc.id as tc_id,
tc.aid as ic_aid

FROM tb LEFT JOIN tc

ON tc.id in (select id from ta);

[tb_id Itb_avalltc_id lic_aid

e 4

I

SB)

Exists Subquery with Left Join

The EXISTS condition fails only if no tb.id matches ta.id, or if tb is empty.

tc values don't affect the result completely.

ta: id | val tb:id |aval tc:id| aid SELECT * FROM ta WHERE EXISTS (
—F—— = F SR SELECT 1 FROM tb LEFT JOIN tc
11 1 3| 3 3] 3 ON ta.id = tc.id);
e id | val
——pe

56

MySQL: Different Approach

SELECT 1 FROM ta WHERE EXISTS (SELECT 1 FROM tb LEFT OUTER JOIN tc
ON ta.id = tc.id);

MySQL seems to pull the referenced table into the subquery, creating a Cartesian-like join

between ta and tb and removing duplicate LEFT JOIN results for ta.id.
+

| -> Remove duplicate ta rows using temporary table (weedout) (rows=2 loops=1)
-> Nested loop left join (rows=4 loops=1)
-> |nner hash join (no condition) (rows=4 loops=1)
-> Covering Index scan on tb using PRIMARY (rows=2 loops=1)
-> Hash
-> Table scan on ta |(rows=2 loops=1)
-> Single-row covering index lookup on tc using PRIMARY (id=ta.id) (rows=0 loops=4)

57

MySQL.: Different Approach

SELECT 1 FROM ta WHERE EXISTS
(SELECT 1 FROM tb LEFT OUTER JOIN tc
ON ta.id = tc.id);

Distinct ta.id

Nested Loop Left Join

Inner Hash Join (no condition) tc (id = ta.id)

58

Can Postgres Do the Same with Pull-up Optimization?

SELECT ta.* FROM ta WHERE EXISTS (

SELECT 1 FROM tb LEFT JOIN tc
ON ta.id = tc.id);

Nested Loop Semi Join
Disabled: true
-> Seq Scan on ta
-> Seq Scan ontb

With the LATERAL path:

Builds a SEMI/ANTI JoinExpr with NULL
quals, converting the subquery into a
LATERAL RTE.

Keeps all outer references within the
pulled-up subquery.

The planner can't generate hash or merge
semijoin paths - only Nested Loops are
used, scanning the inner per outer row.
Prevents creation of equivalence classes.
The planner can't reorder this input across
others, which limits global join-order
optimization.

59

Exploring Pull-down in Postgres

SELECT ta.* FROM ta WHERE EXISTS
(SELECT 1 FROM tb LEFT JOIN tc ON ta.id = tc.id);

Unique ta.id
-> Nested Loop Left Join Only one drawback - the invasive
-> Nested Loop development and more tree walkers,
->Seq Scan on tb but it looks like we don’t have a
-> Seq Scan on ta choice
-> Seq Scan tc
Filter: id = ta.id

60

PGDU 2025 Pogzgres Pro

Conclusion and Future Development

Conclusion And Further Development

e PostgreSQL already supports several forms of pull-up optimization that can eliminate
redundant subquery execution and unlock higher-level planner optimizations, such as
global join-order search.

e Pull-up optimizations apply only when the subquery is simple.

e The transformation is complex because it must update all elements tied to a
subquery.

e Two current limitations remain for EXISTS sublinks:

o Subqueries with INNER JOINSs.
o Subqueries with OUTER JOINs that reference outer variables.

e The proposed patch resolves the first case but leaves the second as an open
problem.

e MySQL's pull-down optimization could theoretically address this limitation — but its
implementation would require highly invasive planner changes.

62

Feel Free to Review My Patch

Enables pull-up of EXISTS subqueries that contain INNER
JOINs. Moves safe quals upward to enable join reordering
and reduce redundant subquery scans.

Main development points:

e Introduces a mutator that collects outer quals and
replaces them with a BoolExpr(TRUE).
e Stops transformation if:
o The subquery contains volatile quals;
o The mutator encounters OUTER JOINs with outer
references, since hoisting would break

null-preserving behavior. https://commitfest.postgresql.org/
patch/5487/

63

PGDU 2025 Pogzgres Pro

Thank You for Your Attention!

EMAIL: alena.ribackina@yandex.ru
LinkedIn: alena-rybakina

