GitLab Database Load Balancer

- HOW to make efficient use of database ____
replicas in a large scale web application.

Dylan Griffith, Principal Engineer GitLab
(gitlab.com/DylanGriffith)

What will this talk cover?

How GitLab uses replicas to serve read-only traffic

How GitLab reads stale data without UX bugs

How GitLab background jobs optimize use of replicas

How GitLab database load balancer does service discovery
How GitLab manages a fleet of replicas and connection poolers
Mistakes we made along the way

What is GitLab's Database Load Balancer?

Y
I
Redis
/ GitLab (Rails) \ —_—
~
<
Pctiveﬂecord W C D
S B)
- GitLab Database Load Balancer e
‘\ (intercept #connection) | .
- : .
\/ G
\[Pg gem } < Postgres

.0 4

Why do we need replicas?

Rails App

Replica Replica

Why do we need replicas to have large CPUs?

Why do we want to use replicas?

4) 4)

Rails App Rails App

- J - /

/[

100k QPS 40k QPS 20k QPS 40k QPS

Why can’t we just send all read queries to replicas?

New issue

Type
[Issue v]

Title (required)

[Make an awesome new feature

Description

Add description templates to help your contributors communicate effectively!

Preview B I § 1=« @ ==x=49 B ¢ O

Write a comment or drag your files here..

POST /issues — 302 /issues/123 —» GET /issues/123

404: Page not found

Why can’t we just send all read queries to replicas?

INSERT INTO issues ...;

SELECT FROM iésues WHERE id = 123;

~—
Replica
(Recovery)

'”SEF‘T INTO ssues .. @ 404: Page not found

V

POST /issues — 302 /issues/123 —» GET /issues/123

Why can’t we just check if the replica is “near enough”?

Rails App

S

t+100ms
INSERT INTO issues ...;

SELECT FROM issues WHERE id = 123;

INSERT INTO issues ...;

\
t+500ms

i

Replica
(Recovery)

User based sticky sessions

- SET /users/stick/999 1
EXPIRE 1s

Rails App
‘ t+ 100ms
\

t+1200ms
™~

INSERT INTO issues ...;
SELECT FROM issues WHERE i1d-= 123;

]

INSERT INTO issues ...;

\“‘*«\“
t+500ms

What about replication spikes?

Rails App

t+1100ms
INSERT INTO issues ...: \

\

\
SELECT FROM issues WHERE id = 123;

- \
| \
INSERT INTO issues ...; _—
(404: Page not found
W t1sooms 9

Replica
(Recovery)

N~

Can’t we just increase the sticking time to 10s?

‘ Rails App \

INSERT INTO issues ...;

\

SELECT FROM iésues WHERE id = 123;

\

404: Page not found

m " INSERT INTO issues ..

>
Replica
(Recovery)

User based sticky sessions with LSN position

- SET /users/stick/999 16/B374D848

wéTEfECT pg_last_waltpfgplay_lsn()

Rails App

t+ 100ms

t+1200ms

INSERT INTO issues ...;
SELECT pg_current_wal_insert_Is();

SELECT FROM issues WHERE id = 123;

~INSERT INTO issues ...;
t+1500ms

~—

How do we quickly remove user sessions from Redis

SET /users/stick/999 16/B374D848
Rails App T

INSERT INTO issues ...;
SELECT pg_current_wal_insert_Isn();

SELECT pg_last_wal_replay_Isn()

16/B374D848 7

INSERTINTOissues .;
 t+1500ms

Replica
(Recovery)

—— e

But not all replicas have the same lag...

SET /users/stick/999 16/B374D848 —
RailsApp | —

INSERT INTO issues ...;
ECT pg_current_wal_insert_Isn();

SELECT pg_last_wal_replay_lIsn()

SELECT * from issues WHERE id = 123; 1/msTADess J
Replica ¢
(Recovery)
S Replica
\(Recovery)[,

S 404: Page not found

Only expire when all replicas have caught up

SET /users/stick/999 16/B374D848

Rails App

SELECT pg_last_wal_replay_Isn()

INSERT INTO issues ...; 16/B374I|3848

ECT pg_current_wal_insert_Isn(); t + 600ms

SELECT pg_last_wal_replay_Isn()
16/B374D848

e J<—t+1000ms ~INSERT INTO issues ... Y

t +500m«s~\

What are background jobs?

Notify all subscribers
by email

Background
Job Runner

Create Issue Rails App

Actor

INSERT INTO issues ...;
SELECT pg_current_wal_insert_Isn();

Send emails to each user
SELECT * FROM issues WHERE id = 123

t+500ms— .
INSERT INTO issues ...; Replica
(Recovery)

Why not always stick for the user?

Notify all subscribers
by email

Background
Job Runner

Create Issue Rails App

Actor

INSERT INTO issues ...;
SELECT pg_current_wal_insert_Isn();

Send emails to each user
SELECT * FROM issues WHERE id = 123

- ey =g

t+500ms— :
INSERT INTO issues ...; Replica
(Recovery)

Why not always use replicas as they are run “later”?

Notify all subscribers
by email

NOT FOUND
ERROR

Background
Job Runner

Create Issue Rails App

Actor
INSERT INTO issues ...;

SELECT pg_current_wal_insert_Isn();
SELECT * FROM issues WHERE id = 123

—> .
Primary INSERT INTO issues ...; EETEe0ms | Re‘plﬂ

(Recovery)
& L

~

Solution: Store the LSN position with the job in Redis

Notify all subscribers

Create Issue Rails App by email Background
16/B374D848 Job Runner
Actor INSERT INTO issues ...;
SELECT pg_current_wal_insert_Isn(); ’
16/B374D848 SELECT pg_last_wal_replay_Isn()

16/B374D848 Send emails to each user
SELECT * FROM issues WHERE id = 123

- N 4

t+500ms— :
INSERT INTO issues ...; Replica
(Recovery)

But can we do better?

Notify all subscribers -
Create Issue Rails App by email Background
16/B374D848 Job Runner
Actor INSERT INTO issues ...;
SELECT pg_current_wal_insert_Isn();
16/B374D848

Send emails to each user
SELECT * FROM issues WHERE id = 123

/

INSERT INTO issues _ | Replica L
(Recovery)

Solution: Delayed strategy

Notify all subscribers Background Job
Create Issue Rails App by email Run later— Runner
16/B374D848

Actor

INSERT INTO issues ...; SELECT pg_last_wal_replay_Isn :
SELECT pg_current_wal_insert_Isn(); p?E/B37_4|)323 plegand R QAT AGeY
16/B374D848

SELECT * FROM issues WHERE id = 123

INSERT INTO issues ...; > Repiica |
(Recovery)

The problem with logical replication

4)
- SET /users/stick/999 16/B374D848 —

Rails App
I 02....16/B374D849
INSERT INTO issues ...;
SELECT pg_current_wal_insert_Isn(); ?
SELECT pg_last_wal_replay_Isn()
16/B374D848 O
il Logical Replication
Replica “€—Pnhysical Replication J P Lagice

. Replica
(Recovery)

Solution: pg_is_in_recovery and pg_last wal replay lsn

CASE
WHEN (SELECT TRUE FROM pg_replication_origin_status) THEN
(SELECT remote_1lsn FROM pg_replication_origin_status)
WHEN pg_is_in_recovery() THEN
pg_last_wal_replay_1lsn()
ELSE
pg_current_wal_insert_1lsn()
END

What about removing from Redis and bringing a replica
back in that is delayed?
- SET /users/stick/999 16/B374D848

Rails App

SELECT pg_last_wal_replay_Isn()

/ 1 74D84
// INSERT INTO issues ...; L 8 >8

SELECT * from issues WHERE id = 123; SELECT pg_current_wal_insert_Isn();
~ SELECT pg_last_wal_i;eplay_lsn()

16/B374D848 ;s ,

e 3) INSERT INTO issues_ I
ew ~— +500ms :
Replica Replica € ——1+1000ms Replica

epiea (Recovery)
(Recovery))

L\(Recovery)}

Multiple databases with different LSNs

Cl
Replica 2

Sec
Replica 1

Main Main
Replica 1 Replica 2

Cl Sec
Replica 1 Replica 2

What about removing unhealthy hosts

ﬁ Lag Time:
ELECT
t+500ms t+60000ms . &

EXTRACT (
t+400ms EPOCH FROM (now() - pg_last_xact_replay_timestamp())
v —)::float as lag

(-
Main Main " Main |
Replica 1 Replica 2 |Repica3, | ag Size (in bytes):

e ~

‘ SELECT pg_wal_lsn_diff(

HiSGOnNSC: #{location}, (#{latest_lsn_query})
)::float AS diff

Rails App

—

What if all replicas are too far behind?

t+60000ms 't+60000ms
t+60000ms
¢ All queries!

—a— = SO S

(. (. (

| e | e I Timeouts! | e |
Main | Main Main

' Replica 1) | Replica 2 y | Replica 3)

~ = S~ — S~ —

LDisconnect

Disconnect Disconnect

Rails App

—

Why do we need a connection pooler?

/

Rails App

~

-

\

Rails App

/\

3

cd

4)
Rails App
o J

Rails App

PGBouncer Reduces Connections to Postgres

Why do we need multiple connection poolers per PG

host?

| 1000s of |
| RailsApp |

Rails App Rails App Rails App

Run multiple PGBouncers per Postgres server

\ \ \
| I f I |
. . | I 1000s of | . .
Rails A Rails A ’) Il Rails Al Rails A
PP PP | | RailsApp | | PP PP
! | J)

\/
(D

Postgres

How does GitLab discover and manage all our replicas
4 D

a n d th e i r PG B 0 u n ce rS? «—DNS replicas.pgbouncer.
Consul » Rails App

pgbouncer-1:6433

pgbouncer-2:6432
pgbouncer-2:6433
Health Checks
S i N\ 7 - ~ N\
I I
pgbouncer-1 | | pgbouncer-1 pgbouncer-2 | | pgbouncer-2
| 6432 16433 I 16432 16433
| |
| I
| I
| I

T
N

| |
I |
| |
I |
I |
| |

7

N*M connection pro

AN

PGBouncer

PGBouncer

Replica

blem

pgbouncer-1:6432
pgbouncer-1:6433
pgbouncer-2:6432
pgbouncer-2:6433
pgbouncer-3:6432
pgbouncer-3:6433

pgbouncer-1:6432
pgbouncer-1:6433
pgbouncer-2:6432
pgbouncer-2:6433
pgbouncer-3:6432
pgbouncer-3:6433

pgbouncer-1:6432
pgbouncer-1:6433
pgbouncer-2:6432
pgbouncer-2:6433
pgbouncer-3:6432
pgbouncer-3:6433

Rails App Rails App Rails App
\’/ \,/

3x6 = 18 Connections

PGBouncer

PGBouncer

Replica

l
|

PGBouncer

PGBouncer

Replica

Solution: 1 connection per hostname

pgbouncer-1:6432 pgbouncer-1:6432 pgbouneer-1+:6432
+ o pgbouncer-1:6433
pgbouncer-2:6432 pgbouncer-2:6432 pgbeuneer-2:6432
pgbeuncer-2:6433 pgbeuneer-2:6433 pgbouncer-2:6433
pgbouncer-3:6432 pgbouncer-3:6432

v v

Rails App Rails App

pgbouncer-3:6433

Rails App

3x3 = 9 Connections

PGBouncer| | PGBouncer

Replica

I
I
I
|
I
I

Replica Replica

Where to learn more

1. https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/database/load bala
ncing => MIT Expat license

2. https://gitlab.com/gitlab-org/gitlab/-/tree/master/gems/gitlab-database-load balan
cing => Hopefully a gem someday

3. More docs: https://docs.gitlab.com/development/database/

Dylan Griffith, Principal Engineer GitLab
(gitlab.com/DylanGriffith)

https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/database/load_balancing
https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/database/load_balancing
https://gitlab.com/gitlab-org/gitlab/-/tree/master/gems/gitlab-database-load_balancing
https://gitlab.com/gitlab-org/gitlab/-/tree/master/gems/gitlab-database-load_balancing
https://docs.gitlab.com/development/database/

